

RION - ANTIRION BRIDGE PROJECT

GENERAL INFORMATION | INSTRUMENTED & GEOMETRICAL MONITORING | CABLE VIBRATION & DECK VORTEX SHEDDING

BY GEFYRA SA TECHNICAL DEPT.

"BRIDGING THE GAP"

THE "RION – ANTIRION BRIDGE" PROJECT

The idea of bridging the gap in Rion Antirion strait was first envisaged by the Greek Prime Minister Charilaos Trikoupis back in late 19th century

Rion Antirion crossing time through ferries could exceed 45 min and significant traffic jams were experienced during:

- ➢Peak season
- Bad weather conditions

Rion Antirion Bridge links the west motorway network of Greece connecting significant ports

Crossing time through Bridge dropped to less than 5 min regardless of weather conditions

Social and economic impact especially on local area

STRUCTURAL DESIGN:

ENVIRONMENTAL SITE CONDITIONS

• Weak Sea Bed up to 500m

No bedrock encountered in first 100 m during soil investigations, while geological studies indicated similar conditions for up to 500 m

• Water depth up to 65 m

Uniform sea bed at depth of 60 m with steep slopes near coast

High Seismicity

Active normal faults on both sides of Corinthian gulf, at the vicinity of Bridge

Tectonic movements

Tectonic kinematic of area indicates separation of Peloponnese from mainland Greece with rate of ${\sim}20$ mm/year

- Strong Wind area
- Navigation channel

Significant marine traffic through Rion - Antirion strait

STRUCTURAL DESIGN:

MAIN DESIGN LOADS

- Seismic load (Spectrum: pga 0,48 g, max Sa 1,20 g for T=0,2 up to 1,0 sec) - EQ of 2000 years Return Period
- Tectonic movements up to 2m (between adjacent piers)
- Design Wind speed 50m/sec at deck height
- Aerodynamic stability up to 74m/sec
- Ship collision:
 - 85000 dwt bulk carrier (full laden) at 16 knots
 - 180000 dwt tanker (on ballast) at 16 knots

STRUCTURAL DESIGN:

```
MAIN CHARACTERISTICS OF STRUCTURE
```


4 DAMPERS ON EACH MAIN PIER & 2 ON EACH TRANSITION PIER (TP)

- In service: The deck is laterally supported by means of a restrainer (nominal load: ±10,5MN for main piers / ± 3,5MN for TP)
- In ultimate conditions: It fuses allowing the dissipation system to absorb the induced energy (dampers stroke: 3,5 m for main piers / 5,2 m for TP)

2 EXPANSION JOINTS:

+1,26/-1,15 m longitudinal expansion in service (max longitudinal expansion +2,81/-2,20 m)

SHALLOW FOUNDATION ON REINFORCED SOIL

STRUCTURAL ELEMENTS AND DESIGN

SOIL & FOUNDATION (FOOTING)

Weak soil was reinforced with steel inclusions (steel pipes 2m diameter)

M1	M2	M3	M4		
112	194	156	_		

Crushed gravel was laid on top to achieve required friction coefficient

Footing was floated and rested on top gravel layer – no connection with inclusions

Enlarged footing diameter to enhance stability and minimize soil stress (80/90m diameter M4/M1-M3)

Preloading of soil to accumulate settlements during construction

STRUCTURAL ELEMENTS AND DESIGN

STRUCTURAL EQUIPMENT: DISSIPATION SYSTEM AT MAIN PIERS

Dissipation system: absorbs earthquake energy, reducing the lateral movement during strong earthquakes

- To avoid transverse movements during normal operation conditions or small earthquakes, the deck is attached to the pylons (and rotating frames) through the fuses
- Fuses on pylons are devices that release the deck when the force exceeds 10500kN in both directions,
- Fuses can be replaced after a strong earthquake easily by replacing the sacrificial thread
- Dampers can absorb lateral deck motions up to ±1,65 m and loads up to 3500kN

INSTRUMENTED MONITORING: STRUCTURAL HEALTH MONITORING ARCHITECTURE

INSTRUMENTED MONITORING: STRUCTURAL HEALTH MONITORING ARCHITECTURE

Sensor	Quantity	Expected range	Sensor range	Monitored phenomenon
3D anemometers	2	0-50 m/sec	0-60 m/sec	Wind intensity
Temperature and Humidity sensor	2	50° C/0-100%RH	-50°C, up to 50°C/ 0- 100% RH	Thermal loading
3D Pylon accelerometers	12	±1.9g (top) ±1.0g(base)	±20g(top) ±3g(base)	Pylon vibration (Earthquake/wind)
1D/3D Deck accelerometers	3/12	±2.7g	±3g	Deck vibration (Earthquake/wind)
3D Ground accelerometers	2	±0.48g	±3g	Earthquake
3D Cable accelerometers	13	-	±3g	Cable vibration Wind
Monostrand load of cables	16	0 up to 75% F _{GUTS} (199 kN)	0-320 kN	Cable load variation (Wind/Earthquake/Balance)
Magnetic distance meter	2	+1260/-1150 mm	3 m	Expansion joint opening (Earthquake/Balance/Thermal)
Strain gauges (full bridge)	4	±10500 kN	±1500µε ±17000 kN	Wind induced lateral load
Road temperature sensors	4	-	-50°C, up to 50°C	User safety (black ice risk)
Deck temperature sensors	5	-	-10°C, up to 80°C	Thermal loading

Lightning

protection

LEVEL 1: Sensors

LEVEL 2: Power supply & signal transfer

- LEVEL 3: Digitalization, acquisition & signal processing
- LEVEL 4: Communication network, data management

INSTRUMENTED MONITORING: STRUCTURAL HEALTH MONITORING ARCHITECTURE

LEVEL 2: Power supply & signal transfer

- Sensors more than 400 m away from DAQ unit
- AC/DC convertors (~230 V to 24 VDC)
- Signal conditioning (Amplifiers)

LEVEL 3: Digitalization, acquisition & signal processing

- 4 acquisition points (one per pylon)
- Low pass filtering at 10 kHz
- Digitalization at 500 Hz
- Signal conversion to engineering unit
- Alert checking and file creation & Real time data transmission
- Synchronization (SNTP)

LEVEL 4: Communication network, data management

- Optic fiber network in ring configuration for redundancy
- Communication with Supervisor Server (SE) for permanent file storage/visualization/parameter management

--- Lightning protection

LEVEL 1: Sensors

- LEVEL 2: Power supply & signal transfer
- LEVEL 3: Digitalization, acquisition & signal processing
- LEVEL 4: Communication network, data management

STRUCTURAL HEALTH MONITORING (PERMANENT SYSTEM)

MONITORING SYSTEM OPERATION PROVIDES:

- 1. Dynamic characteristics of actual structure
- 2. Characterization of real actions
- 3. Design verification and feedback
- 4. Structural health status determination
- 5. Supports Operation

History Files analysis: Slow varying processes/statistical parameters of structural response

History files: 1 value every 30 sec

Dynamic Files analysis: Dynamic process/actual measurements of structural response

Dynamic files: High frequency (100hz) records of limited duration

AMBIENT CONDITIONS DATA ANALYSIS

DATA: History

Analysis output

Wind speed & direction

- Data exclusion algorithm on selected data
- Addition of Meteo Year data to global Meteo database
- Statistical properties calculation per month
- Distribution per wind direction
- Graphic representation

M1M2 JAN - DEC 2015

EXPANSION JOINT DATA ANALYSIS

DATA: History

Analysis output

- Data exclusion algorithm on selected data
- Dependence on Deck temperature
- Deck length calculation
- Estimation of creep & shrinkage
- Addition of EJ Year data to global EJ database

2015 Calculation of Deck Creep and Shrinkage

LOAD ON CABLE DATA ANALYSIS

DATA: History & Dynamic

Analysis output

- Data exclusion algorithm on selected data
- Statistical properties
- Distribution
- Addition of LoC Year data to global LoC database
- Comparison with equivalent LoC (frequency calculation)

DECK VIBRATION

DATA: Dynamic

Analysis output

- Data exclusion algorithm on selected data
- Calculation of vibration indexes
- Statistical properties calculation
- Dependence on Wind speed
- Identification of single mode vibration cases
- Modal identification

· E19-Z C3S20W

• E19-Z C3S20W

25

20

Date Time	WS M1- M2 (m/s)	WD M1- M2 (°)	WS M3- M4 (m/s)	WD M3- M4 (0)	M1S18E E3-Z	M1S18W E4-Z	M1N17E E7-Z	M1M2W E9W-Z	M1M2E D9E-Z	M2S17E E11-Z	M2N17W E15-Z	M2M3E E17E-Z	M2M3W D17W-Z	M3S20W E19-Z	M3N20E E24-Z	M3M4E D26E-Z	M4S20E E28-Z	M4N18W E32-Z	M4N18E E33-Z
1/2/14 18:00	24.5	108	22.4	108	6.9	6.5	5.2	7.1	7.4	7.0	6.8	7.5	7.6	6.8	6.8	6.7	5.6	5.2	5.5
1/2/14 20:00	25.2	109	21.8	100	6.3	6.0	7.0	7.6	7.8	7.5	7.4	8.0	7.9	7.9	8.5	8.0	6.9	5.0	5.4
2/2/14 0:00	24.2	113	24.6	110	5.5	5.5	5.6	7.9	8.1	7.4	8.6	10.7	10.6	10.8	9.9	9.5	8.2	6.6	6.9
9/5/14 14:00	8.8	93	8.7	94				10.4	10.8	12.4	12.9	18.2	18.1	16.3	14.1	10.6	6.1		

DECK VIBRATION

DATA: Dynamic

Analysis output

- Data exclusion algorithm on selected data
- Calculation of vibration indexes
- Dependence on Wind speed
- Identification of single mode vibration cases
- Modal identification*

*Synchronization algorithm is necessary

CABLE STAY VIBRATION

Cable stays are characterized by low intrinsic damping and are prone to large amplitude vibrations.

• Damping ratio to critical $\xi = -6 \times 10^{-4} \times L + 0.24$ (L in m)

Rion - Antirion cable system critical phenomenon for vibration is excitation due to deck combined with buffeting.

- Cable modal frequencies are within the range of torsional deck frequencies
- For moderate winds (16 m/sec) vibration amplitude of up to 800mm can occur for longer cables (L>200m)

Proper provisions were available in order to implement various mitigation measures.

- Cross ties installation at pre-installed steel collars on L/3 & 2L/3 of cable
- Installation of External Hydraulic Dampers (EHD) on longer cables and Internal Hydraulic Dampers (IHD) on shorter ones (#1 to #10)

Selection of optimum mitigation measures required actual structural data from SHM system

Cable	No of Strands	Length (m)	Area (cm²)	Mass (kg/m)	Tension (kN)	Inclination (deg)	1 st Frequency (Hz)
C3S23	70	286.2	105.0	97.1	6023	20.5	0.435
C3S19	59	239.4	88.5	81.4	5316	23.0	0.533
C3S14	47	182.5	70.5	65.2	4063	28.5	0.684
C3S04	43	87.0	64.5	59.8	1980	70.0	1.046

CABLE STAY VIBRATION

Event Characteristics

- Eastern winds $\sim 120^{\circ}$ from deck axis
- Maximum wind speed (2' average) 31.2 m/sec M1M2 28.3 m/sec M3M4
- Lower temperature 1.2 °C (ice formation on cables)

Deck Response

- Maximum deck vertical amplitude ± 16 cm
- Frequency bandwidth 0.2 to 0.7 Hz

Cable Response

Maximum vibration amplitude >2.0 m (cables L>200m)

dry galloping

4%)

CABLE STAY VIBRATION

CSTB Analysis on recorded data

Based on data records an envelope of deck response was calculated

$$V(f) = 1 + \frac{3}{f^2}$$
, f (frequency) in Hz, V (amplitude) in mm

The envelope was used as input for parametric excitation analysis and calculation of necessary damping for mitigation of cable vibration amplitude to one (1) cable diameter

- No additional damping for short cables L<100 m
- 1% damping ratio for intermediate cables L = 100 250 m
- 1.5 % damping ratio for long cables L>250 m

2.5

0

Minimum to avoid high amplitudes

CABLE STAY VIBRATION

Maximum deck vertical amplitude ±20 cm

Frequency bandwidth 0.2 to 0.8 Hz

Cable Response

Maximum vibration amplitude <0.5 m

DECK VORTEX SHEDDING

DECK VORTEX SHEDDING

History files: 0,5sec averaged values every 30sec -Deckaccelerometer 17W M2M3W D17W-Z (g) -Dynamic 12:00 -Dynamic 14:00

History files capture all events

INVESTIGATION IN COOPERATION

(STDh ~STDd)

DECK VORTEX SHEDDING

Calculation of transverse loading of Gusset C3S23W for maximum VS vibration events

Maximum transverse loading due to VS events is <20 % of cut off limit 0,5% Fcp

VS event duration/amplitude

Goussets 11 à 23

VS vibration amplitude is less than specified limit for tolerable comfort according to BD49/01

Vibration amplitude < ymax=214 mm

$$\begin{split} K_D &= f^2 * y_{max} \text{ , f in Hz} \\ K_D &< 10 \ cm/sec^2 \end{split}$$

GEOMETRICAL MONITORING (NON-PERMANENT SYSTEM)

Measurements and evaluation of:

- tectonic movements
- Piers tilt & settlement
- Deck geometry
- TP settlement

The processed data are analyzed & compared with theoretical results

SECTION DETA	NLS				
	SECTION	SUB SECTION	DESCRIPTION	SURVEY METHOD	TARGET ACCURACY
Global Network	GN1		PLANIMETRIC NETWORK Rion & Antirion	G: GPS STATIC	+ 4mm
		GN2.1	LEVELING NETWORK Rion shore	A: GEOM, LEVEL.	± 3 mm
	GN2	GN2.2	LEVELING NETWORK Antirion shore	A: GEOM. LEVEL.	± 3 mm
		GN2.3	LEVELING NETWORK Traverse Rion – Antirion	B: STL	±5mm
Main Bridge		MB1.1	MAIN BRIDGE T0 & T5 Planimetry : MBT*WALL*	G: GPS STATIC	± 5 mm
	MB1	MB1.2	MAIN BRIDGE Pylon head top : MBM*PT	C: TERRESTRIAL	±5 mm
		MB1.3	MAIN BRIDGE Pylon base : MBM*PB*	C: TERRESTRIAL	±5mm
	MBO	MB2.1	MAIN BRIDGE Deck cable stay points	C': TERRESTRIAL	± 10 mm
	MDZ	MB2.2	MAIN BRIDGE Pylon head : MBM*PH	C: TERRESTRIAL	±5mm
	MB3	MB3.1	MAIN BRIDGE T0 & T5 Footing leveling	A: GEOM. LEVEL.	± 0.6 mm
		MB3.2	MAIN BRIDGE Pylon leveling : PB, HS, SS RS	A: GEOM. LEVEL.	± 0.6 mm
		MB3.3	MAIN BRIDGE Verticality Foot Slab – Shaft Slab	C: TERRESTRIAL	±3 mm
Rion Viaduct	RV1		RION VIADUCT P7 Planimetry : RV*P7WALL*	G: GPS STATIC	± 5 mm
	B)//2	RV2.1	RION VIADUCT Footing leveling link	A: GEOM. LEVEL.	±3 mm
	RVZ	RV2.2	RION VIADUCT Footing relative link	A: GEOM. LEVEL.	± 0.6 mm
	RV3		RION VIADUCT Deck leveling	A: GEOM. LEVEL.	± 4 mm
Antirion Viaduct	AV1		ANTIRION VIADUCT N16 Planimetry : AV*N16WALL*	G: GPS STATIC	+ 5 mm
		AV2.1	ANTIRION VIADUCT Footing leveling link	A: GEOM, LEVEL.	± 3 mm
	AV2	AV2.2	ANTIRION VIADUCT Footing relative link	A: GEOM, LEVEL.	± 0.6 mm
	AV3		ANTIRION VIADUCT Deck leveling	A: GEOM. LEVEL.	± 4 mm
Toll Plaza	TP1	TP1	TOLL PLAZA Leveling	A: GEOM. LEVEL.	±3 mm
		TP1new	TOLL PLAZA Leveling on buildings	A: GEOM. LEVEL.	± 0.6 mm

GEOMETRICAL MONITORING (NON-PERMANENT SYSTEM)

Measurements and evaluation of:

- tectonic movements (T0-T5 opening rate ~2.2 mm/year)
- Piers tilt & settlement (max settlement <8 cm since 2004)
- Deck geometry
- TP settlement

GEOMETRICAL MONITORING (NON-PERMANENT SYSTEM)

Average dX

Average dY

0,2000 NORTH SOUTH 0,1800 0,1600 0,1400 0,1200 0,1000 0,0800 0,0600 0,0400 0,0200 * *** ٠ 0,0000 -0,0200 -0,0400 4 -0,0600 ٠ ٠ -0,0800 • * -0,1000 -0,1200 ٠ -0,1400 ٠ -0,1600 -0,1800 -0,2000 MB4N20 1B4N16 1B3N22 BINE8 1B3N14 4B3N10 MB3S15 **1B3S19** 1B2N20 1B2N16 MB1N18 MB1N10 MB1N06 4B1N02 MB1S19 MB4N24 4B4N12 1B4N08 1B4S05 1B4S09 1B4S13 4B4S17 1B4S21 1B3N06 1B3N02 VB3S03 VB3S07 1B3S11 1B3S23 1B2N12 **IB2N08** 1B2S05 MB2S09 4B2S13 1B2S17 MB1N22 1B1N14 MB1S03 MB1S07 MB1S11 MB1S15 MB1S23 1B4N04 1B4S01 1B2N04 VB2S01 1B2S21

Average dZ

ddZ W-E

Poly. (Average dX)

Poly. (Average dY)

MAIN BRIDGE DECK 2016 - 2004

Measurements and evaluation

- tectonic movements
- Piers tilt & settlement
- Deck geometry
- TP settlement

GEOMETRICAL MONITORING (NON-PERMANENT SYSTEM)

Measurements and evaluation of:

- tectonic movements
- Piers tilt & settlement
- Deck geometry
- TP settlement (~13cm since 2004)

TOLL PLAZA_dZ GABION WALL compared to 2004 zero point

Thank you for your attention